Symmetriads
In the range until
1,000,000,000
Evensymmetriades have 2, 4, 6, 8, 10,
Oddsymmetriades have
3, 5, and 7 variations
Gc
–
the gap in the center of the symmetrical group
* Numbers of groups and pairs do not include
ones of special kind of it.
6666666666666666666
In the range until
1,000,000
Evensymmetiads
S2.
+
V
–
V. Gc,
S4.
+V1+V-V-V1.Gc,
S6.
+V2+V1+V-V-V1-V2.Gc,
S8.
+V3+V2+V1+V-V-V1-V2-V3.Gc
S10.
+V4+V3+V2+V1+V-V-V1-V2-V3-V4.Gc
Designation |
Samples |
S2.
+
V
–
V. Gc
G1
= g2 Gc
= G2
Total number
in the ranges:
until 100,000
994
in 23 pairs
until 1,000,000
6728
in 36 pairs
|
106 |
577 |
6 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
107 |
587 |
10 |
-4 |
|
|
|
|
|
|
|
|
|
|
|
|
108 |
593 |
6 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
S4.
+V1+V-V-V1.Gc
G1 = g4
G2
=
G4
Gc
=
G3
Total number
in the ranges:
until 100,000
129
in 56 pairs
until 1,000,000 709 in 158 pairs |
Regular
2451 |
21851 |
10 |
-2 |
|
|
|
|
|
|
|
|
|
|
|
|
2452 |
21859 |
8 |
-4 |
|
|
|
|
|
|
|
|
|
|
|
|
2453 |
21863 |
4 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
2454 |
21871 |
8 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
2455 |
21881 |
10 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
Intermediate
37 |
157 |
6 |
0 |
|
|
|
|
|
|
|
|
|
38 |
163 |
6 |
-2 |
|
|
|
|
|
|
|
|
|
39 |
167 |
4 |
2 |
|
|
|
|
|
|
|
|
|
40 |
173 |
6 |
0 |
|
|
|
|
|
|
|
|
|
41 |
179 |
6 |
-4 |
|
|
|
|
|
|
|
|
|
Irregular
9 |
23 |
4 |
2 |
|
|
|
|
|
|
|
|
|
10 |
29 |
6 |
-4 |
|
|
|
|
|
|
|
|
|
11 |
31 |
2 |
4 |
|
|
|
|
|
|
|
|
|
12 |
37 |
6 |
-2 |
|
|
|
|
|
|
|
|
|
13 |
41 |
4 |
-2 |
|
|
|
|
|
|
|
|
|
|
S6.
+V2+V1+V-V-V1-V2.Gc
G1 = g6
G2
=
G6
G3
=
G5
Gc
=
G4
Total number
in the ranges:
until 100,000
20
in 19 pairs
until 1,000,000
96 in
82 pairs
|
124 |
683 |
6 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
691 |
8 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
701 |
10 |
-2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
709 |
8 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
719 |
10 |
-2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
727 |
8 |
-2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
733 |
6 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S8.
+V3+V2+V1+V-V-V1-V2-V3.Gc
G1 = g8
G2
=
G8
G3
=
G7
G4
=
G6
Gc
=
G5
Total number
in the ranges:
until 100,000
6
in 6 pairs
|
7 |
17 |
4 |
-2 |
|
|
|
|
|
|
|
|
|
8 |
19 |
2 |
2 |
|
|
|
|
|
|
|
|
|
9 |
23 |
4 |
2 |
|
|
|
|
|
|
|
|
|
10 |
29 |
6 |
-4 |
|
|
|
|
|
|
|
|
|
11 |
31 |
2 |
4 |
|
|
|
|
|
|
|
|
|
12 |
37 |
6 |
-2 |
|
|
|
|
|
|
|
|
|
13 |
41 |
4 |
-2 |
|
|
|
|
|
|
|
|
|
14 |
43 |
2 |
2 |
|
|
|
|
|
|
|
|
|
15 |
47 |
4 |
2 |
|
|
|
|
|
|
|
|
|
|
S10.
+V4+V3+V2+V1+V-V-V1-V2-V3-V4.Gc
G1 = g10 G2
=
G10
G3
=
G9
G4
=
G8
G5
=
G7
Gc
=
G6
Total number
in the ranges:
until 100,000
2 in 2 pairs
until 1,000,000
5 in 5 pairs |
5660 |
55793 |
6 |
0 |
|
|
|
|
|
|
|
|
|
|
|
5661 |
55799 |
6 |
2 |
|
|
|
|
|
|
|
|
|
|
|
5662 |
55807 |
8 |
-2 |
|
|
|
|
|
|
|
|
|
|
|
5663 |
55813 |
6 |
-2 |
|
|
|
|
|
|
|
|
|
|
|
5664 |
55817 |
4 |
-2 |
|
|
|
|
|
|
|
|
|
|
|
5665 |
55819 |
2 |
2 |
|
|
|
|
|
|
|
|
|
|
|
5666 |
55823 |
4 |
2 |
|
|
|
|
|
|
|
|
|
|
|
5667 |
55829 |
6 |
2 |
|
|
|
|
|
|
|
|
|
|
|
5668 |
55837 |
8 |
-2 |
|
|
|
|
|
|
|
|
|
|
|
5669 |
55843 |
6 |
0 |
|
|
|
|
|
|
|
|
|
|
|
5670 |
55849 |
6 |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
2-ads
S2
V
0 ∩
Gc0 |
V
~ 0
∩
Gc~
0 |
|
|
666666 |
|
|
V > 0: |
|
|
V < 0: |
|
|
V
0 |
Gc
min
=
V
+
6 |
G1
min
=
6 |
V
0 |
Gc
min
=
6 |
G1
min
=
12 |
V+ |
Gc
min
=
V
+
4 |
G1
min
=
4 |
V+ |
Gc
min
=
2 |
G1
min
=
4 |
V- |
Gc
min
=
V
+
2 |
G1
min
=
2 |
V- |
Gc
min
=
2 |
G1
min
=
6 |
666666
For every list of 2-ades having the same value of V and sorted by Gc |
{ V
0 |
|
|
|
∩
(Pn
+ 1
– Pn)2
} |
{ V
~0
∩
(
Gc(
n + 1)
=
Gc
n
U
Gc(
n+ 1)
=
Gc
n
+
6
) |
∩
(Pn
+ 1
– Pn)0} |
{ V
~0
∩
~(Gc
(n + 1)
=
Gc
n
U
Gc(
n+ 1)
=
Gc
n
+
6
) |
∩
(Pn
+ 1
– Pn)~0} |
666666
Distribution of the number of
S2 in pairs
in the range until 100,000
All
pairs form 3 series:
The pairs having V+
form the major series Y
+=
347e-
0.124 V
The
pairs having V-
form the medium series Y
-
= 156e-
0.105
V
The
pairs having V0
form the minor series Y
0
= 122e-
0.131V
Oddsymmetriads
S3.
+
V1 +0
–
V1. Gc,
S5.
+
V1 +V2+0
–V2
–V1. Gc
Gn
Î
G
0 and Vn
Î
V
0
Designation
|
Samples
|
S3.
+
V1 +0
–
V1. Gc
G1
= g3
G2
= G3
Gc
=
G2
Total number in the ranges:
until 100,000
8
in 2 pairs
until 1,000,000 54 in 4 pairs
|
2137 |
18719 |
6 |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2138 |
18731 |
12 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2139 |
18743 |
12 |
-6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2140 |
18749 |
6 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S5.
+V1+
V2 +0
–
V2-
V1. Gc
G1
= g5
G2 = G5
G3 = G4
Gc
=
G3
Total number in the ranges:
until 100,000 0
until 1,000,000 1
|
|
For
S3
Vc
= 0
Î
V
0
®
G2
Î
G
0 and
G3
=
g2
Î
G
0
®
V1
Î
V
~k
and
-V1
Î
V
~k
But
-V1
º
R( V1)
®
V1
Î
V
0 and
-V1
Î
V
0
and
G1
Î
G
0 and
g3
Î
G
0
There is the same for
S5
and any oddsymmetriads
[ Up ] [ Flats ] [ Stairs ] [ Zigzags ] [ Symmetriads ] [ Curls ] [ Maximal Regular and Repeating Groups ] [ The Unique Biggest Groups ]
|