Groups in the Range until 1,000,000

There are in the range of primes until 1,000,000:

78,498 prime numbers

Repeating groups

 Size Number of repeating groups clusters Total number of groups in all clusters of the size Ratio of repeating groups # to primes #, % 2 674 78,298 99.75 Comparing  with range until 100,000 increase 3 4,942 75,170 95.76 4 12,283 58,724 74.81 5 10,220 27,661 35.24 6 3,269 7,073 9.01 7 653 1,331 1.70 decrease 8 141 283 0.36 9 34 68 0.09 10 7 14 0.02 11 2 4 0.005 12 1 2 0.003
 The same in the range until 100,000The density of the repeating groups of the size of 2 aspires to 100%   Repeating irregular groups
 Size Number of foursomes Total number of irregular groups  in all foursomes of the group size 2 629 66,919 3 4,776 71,012 4 12,155 57,759 5 10,162 27,462 6 3,254 7,037 7 652 1,329 8 140 281 9 34 68 10 7 14 11 2 4 12 1 2
 The same in the range until 100,000 666666666666

Regular Groups

 Type Size 2 3 4 5 6 7 8 9 10 Symmetriads 6728 54 709 1 96 14 5 Curls 3282 246 316 27 24 5 2 1 Stairs 4427 466 46 5 1 Flats 2993 229 Zigzags 425 51 5

Up ] Introduction of Variation ] Regular and Repeating Groups ] Groups in the Range until 100,000 ] [ Groups in the Range until 1,000,000 ] Key of Primes Structure ] Distribution of gaps and variations ] Boolean Algebra of Classes ] Consecutive primes ] Groups of primes in the infinite set ] Groups of primes in a limited range ] We have for each kind of regular and repeating groups ]